Data Science on the Google Cloud Platform: Implementing End-to-End Real-time Data Pipelines: from ingest to machine learning

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). With this practical guide, author and GCP Program Manager Valliappa Lakshmanan shows you how to gain insight into a sample business decision by applying different statistical and machine learning methods and tools.Along the way, you’ll get an extensive tour of the big data and machine learning parts of GCP. You’ll start with statistical methods, move into straightforward classification, and then explore windowing and real-time prediction.Move from basic to increasingly sophisticated methodsUnderstand interactive querying of very large datasets with BigQueryLearn about probabilistic decision making with SparkSQL and SparkTrain a TensorFlow model in Python and call it from JavaCreate a data processing pipeline with DataflowCompute time-windowed aggregates in real-time

Author: Valliappa Lakshmanan

Learn more